Search results for "Pulsed EPR"
showing 10 items of 21 documents
Pulse EPR methods for studying chemical and biological samples containing transition metals
2006
This review discusses the application of pulse EPR to the characterization of disordered systems, with an emphasis on samples containing transition metals. Electron nuclear double-resonance (ENDOR), electron-spin-echo envelope-modulation (ESEEM), and double electron-electron resonance (DEER) methodologies are outlined. The theory of field modulation is outlined, and its application is illustrated with DEER experiments. The simulation of powder spectra in EPR is discussed, and strategies for optimization are given. The implementation of this armory of techniques is demonstrated on a rich variety of chemical systems: several porphyrin derivatives that are found in proteins and used as model s…
Effects of temperature on electron paramagnetic resonance of dangling oxygen bonds in amorphous silicon dioxide
2011
The properties of electron paramagnetic resonance (EPR) signal of oxygen dangling bonds in amorphous SiO2 ("non-bridging oxygen hole centers", NBOHC) in excimer laser-irradiated amorphous SiO2 were studied in the temperature range 20K to 295K. NBOHCs strongly affect optical and chemical properties of amorphous SiO2 -based (nano) structures and their surfaces. The behaviour of their EPR signal is complicated due to a nearly degenerate electronic ground state. It was found that EPR signal has a non-Curie (~1/T) T-dependence down to 40K, indicating that EPR-based concentration estimates routinely obtained at T = 77K underestimate the center concentrations at least by a factor of 1.7. The estim…
Pulsed EPR investigations on radiations dosimeters.
2009
Early folding events during light harvesting complex II assembly in vitro monitored by pulsed electron paramagnetic resonance
2016
Efficient energy transfer in the major light harvesting complex II (LHCII) of green plants is facilitated by the precise alignment of pigments due to the protein matrix they are bound to. Much is known about the import of the LHCII apoprotein into the chloroplast via the TOC/TIC system and its targeting to the thylakoid membrane but information is sparse about when and where the pigments are bound and how this is coordinated with protein folding. In vitro, the LHCII apoprotein spontaneously folds and binds its pigments if the detergent-solubilized protein is combined with a mixture of chlorophylls a and b and carotenoids. In the present work, we employed this approach to study apoprotein fo…
Rigid Core and Flexible Terminus
2012
The structure of the major light-harvesting chlorophyll a/b complex (LHCII) was analyzed by pulsed EPR measurements and compared with the crystal structure. Site-specific spin labeling of the recombinant protein allowed the measurement of distance distributions over several intra- and intermolecular distances in monomeric and trimeric LHCII, yielding information on the protein structure and its local flexibility. A spin label rotamer library based on a molecular dynamics simulation was used to take the local mobility of spin labels into account. The core of LHCII in solution adopts a structure very similar or identical to the one seen in crystallized LHCII trimers with little motional freed…
Structural analysis of Cu(II) ligation to the 5'-GMP nucleotide by pulse EPR spectroscopy.
2007
JBIC Journal of Biological Inorganic Chemistry, 12 (6)
Near Isotropic D4d Spin Qubits as Nodes of a Gd(III)-Based Metal-Organic Framework
2021
Embedding coherent spin motifs in reproducible molecular building blocks is a promising pathway for the realization of quantum technologies. Three-dimensional (3D) MOFs are a versatile platform for the rational design of extended structures employing coordination chemistry. Here, we report the synthesis and characterization of a gadolinium(III)-based MOF, [Gd(bipyNO)4](TfO)3·xMeOH (bipyNO = bipyridine,N,N′-dioxide; TfO = triflate; and MeOH = methanol) (quMOF-1), which presents a unique coordination geometry that leads to a tiny magnetic anisotropy (in terms of D, an equivalent zero-field splitting would be achieved by D = 0.006 cm–1) even compared with regular Gd(III) complexes. Pulsed elec…
Interaction of Novel Metal Complexes with DNA: Synthetic and Structural Aspects
2009
Metal ions bind to nucleic acids at various positions. This binding can be modulated by using metal complexes with appropriate ligands. Novel mono- and especially dinuclear metal complexes could be a powerful tool to detect rare, but still physiologically relevant, forms of DNA, e.g. the left-handed Z-DNA. In this review, our recent research activities in this area of bioinorganic chemistry are summarized. A special emphasis is laid on the synthetic challenges that arose upon the synthesis of the polyamine ligands. Further, some rather unusual approaches to elucidate the solution structure of copper bound to guanosine monophosphate with the help of pulsed EPR techniques like ENDOR and HYSC…
Exploiting Clock Transitions for the chemical design of resilient molecular spin qubits
2021
Molecular spin qubits are chemical nanoobjects with promising applications that are so far hampered by the rapid loss of quantum information, a process known as decoherence. A strategy to improve this situation involves employing so-called Clock Transitions (CTs), which arise at anticrossings between spin energy levels. At CTs, the spin states are protected from magnetic noise and present an enhanced quantum coherence. Unfortunately, these optimal points are intrinsically hard to control since their transition energy cannot be tuned by an external magnetic field; moreover, their resilience towards geometric distortions has not yet been analyzed. Here we employ a python-based computational t…
Cryogenic 35GHz pulse ENDOR probehead accommodating large sample sizes: Performance and applications.
2009
The construction and performance of a cryogenic 35GHz pulse electron nuclear double resonance (ENDOR) probehead for large samples is presented. The resonator is based on a rectangular TE(102) cavity in which the radio frequency (rf) B(2)-field is generated by a two turn saddle ENDOR coil crossing the resonator along the sample axis with minimal distance to the sample tube. An rf power efficiency factor is used to define the B(2)-field strength per square-root of the transmitted rf power over the frequency range 2-180MHz. The distributions of the microwave B(1)- and E(1)-field, and the rf B(2)-field are investigated by electromagnetic field calculations. All dielectrics, the sample tube, and…